

2015 Advanced Lithography:

Measuring Aberrations using EUV Mask Roughness

Rene Claus

Markus Benk, Antoine Wojdyla, Alex Donoghue, David Johnson, Kenneth Goldberg, Andrew Neureuther, Patrick Naulleau, and Laura Waller

Measuring Aberrations with Roughness

- Aberrations change the results from an EUV actinic inspection system
 - Want to measure aberrations
 - Want to measure from images directly
- Could use a programmed object (ex: contact array)
- We present a way to use existing mask roughness
 - Aberrations can be measured on any mask

Measuring Aberrations

- Unknown test object
 - Calculate object from model + measurements
- Unknown aberrations
- Minimize residual error by guessing different aberrations

New Phase Retrieval Algorithm

More details in:

R. Claus, "Phase Measurements of EUV Masks," SPIE Advanced Lithography (2015).

Weak Object Assumption

Consider a rough mirror (or mask)

- Most of the light is reflected
- Some of the light is scattered
- The electric field leaving the mask can be expressed as the sum of these components

$$E = 1 + E_S$$

$$I = |1 + E_S|^2 = 1 + 2Re\{E_S\} + |E_S|^2$$

$$\longrightarrow Scattering$$

- - We can ignore Scattering-Scattering

Recovering the Field

Write the intensity as a sum of convolutions:

$$I = 1 + E_{re} * K_{re} + E_{im} * K_{im} + O(|E_{s}|^{2})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{I} = 1 + \widetilde{E_{re}} \cdot \widetilde{K_{re}} + \widetilde{E_{im}} \cdot \widetilde{K_{im}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} \tilde{I}_{1}(f_{i}) \\ \vdots \\ \tilde{I}_{re}(f_{i}) \end{bmatrix} = \begin{bmatrix} \widetilde{K_{re}^{1}}(f_{i}) & \widetilde{K_{im}^{1}}(f_{i}) \\ \vdots & \vdots \\ \widetilde{K_{re}^{n}}(f_{i}) & \widetilde{E_{im}}(f_{i}) \end{bmatrix} \quad \text{Linear system of equations } \rightarrow$$

$$\text{Linear system of equations } \rightarrow$$

Transfer functions:

$$\widetilde{K_{re}} = (P \cdot L) \star P + P \star (P \cdot L)$$

$$\widetilde{K_{im}} = (P \cdot L) \star P - P \star (P \cdot L)$$

P: pupil function, L: source shape

consider aberrations

use partial coherence

solve with least squares

Aberration and Coherent Imaging

- Under coherent illumination, the object & aberrations are not linearly independent
- Partial coherence can solve the problem

Perfect Pupil

Directional Roughness

Partial Coherence Improves Sensitivity

Simulated 21 through-focus images of speckle with astigmatism:

SEMATECH Berkeley SHARP

- Actinic mask inspection system at LBNL
- Zone plate lens as objective
 - + Less expensive than multilayer optics
 - + Easy to test different lenses
 - Single lens system
 - Strong field dependent aberrations
 - Aberrations vary with focus

Aberrations Vary With Focus

Modeling the Zone Plate

- Instead of modeling aberrations at each position we model the zone plate
 - rotation of zone plate
 - position of zone plate
 - illumination angle
- Calculate aberrations using ray tracing
- Consider physical measurement
 - "Zone plate was moved 500nm up per image"
 - Captures how aberrations change in each image
 - Captures how object moves
- Fewer parameters to optimize

Calibrating the Zone Plate

Illumination: $\sigma = 0.25$, monopole

Examine small areas → aberrations are approx constant

- Where is the center of the field?
- What is the tip/tilt of the zone plate?

Wasn't able to automatically optimize the parameters

- Small stage drift
- Field dependent illumination

Guessed good parameters

Reduced Residual

Reduced Residual

Improved Results with ZP Model

Ideal pupil fits "average aberration" → fits best at center of the stack

Uncorrected Aberrations Affect the Object

Recovered Object:

Uncorrected Aberrations Affect the Object

10

15

-10

Recovered Object:

10

0

μm⁻¹

Conclusion

- Presented new algorithm to measure aberrations
 - Unknown test object (ex: EUV mask roughness)
 - Use partial coherence to improve sensitivity
- Used a physical model for the zone plate on SHARP
 - Removed zone plate aberrations
 - Recovered field from aberrated images

Acknowledgement

Thank you for your attention!

reneclaus@gmail.com

Questions?

reneclaus@gmail.com

